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Note 

Application of Hermite Approximation 
to a Boundary Value Problem 

A fifth degree Hermite approximant is used to provide initial values, with error bounds, for 
solving the boundary value problem y” =f(x, JJ) by a shooting method. 

1. INTRODUCTION 

We consider the second order boundary value problem 

Y”(X) = J-(x, Y>, Y(0) = a, Y(l) =P, (1) 

whose solution is required on [0, 11. Clearly a similar problem with boundary 
conditions at x = a and b can be reduced to the form (1) by means of a linear change 
of variable. We will assume that, for all x E [0, 1 ] and all y, f,,(x, y) is continuous 
and 

f&, Y) >, K > -2. (2) 

It then follows from a more general result due to Bailey ef al. [ 1 ] that (1) has a 
unique solution. (See also Bailey et al. [2, p. 961.) 

We propose a Hermite type of approximation for estimating y’(O), which will 
provide initial values for solving (1) by a “shooting” method. For an account of 
shooting methods, see Fox [3] or Keller [4]. In this connection, note the remark by 
Keller in the preface to his text: “Initial-value methods are seldom advocated in the 
literature, but we find them extremely practical and theoretically powerful.” 

2. AN INTERPOLATION PROCESS 

Consider the polynomial 

~(x)=(1-x)3(1+3x+6x2)y,,+~3(10-15x-+6x2)~, 

+x(l-x)3(l +3x)yb-X3(1-X)(4-3x)y; 

+4x2(1 -x)“yi +4x3(1 -x)‘y;I, (3) 
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where yi, y; and y:! (i = 0, 1) denote the values of y and its first two derivatives at 
x = 0 and 1. One can easily verify that this Hermite-type approximant satisfies 

P(X) = Y(X)9 P’(X) = Y’(X), P”(X) = YI(X) 

at x = 0 and 1. Further, it is well known (see Davis [5]) that if y E C6[0, 11, then 
given any fixed x E [0, 1 ] there is a number {, E (0, 1) such that 

y(x) - p(x) = x3(x - 1)3 ~‘~‘(<,)/6!. (4) 

Given the differential equation (l), we estimate yb and y; as follows. We differen- 
tiate (4) three times and set x = 0 and x = 1 in turn to give 

~‘~‘(0) = -6Oy, + 6Oy, - 36~; - 24~; 

- 9y;; + 3y’; - y’6’((,)/5!, (5) 

yt3’( 1) = -6Oy, + 6Oy, - 24~; - 36~; 

- 3yl; + 9y;’ + y’6’(&)/5!. (6) 

From (1) we replace y” by f(x, y) and put 

Y’3’(4 = f,(x, Y(X)) + .&(x7 Y(X)> Y’(X). 

Hence Eqs. (5) and (6) are linear in yb and y; of the form 

Au=b, (7) 

where u* = (yb, y;) and 

A = 36 +f,(O, YJ 
[ 

24 
24 1 36 +&CL YJ * 

Since the final terms on the right sides of (5) and (6) are generally unknown, we 
cannot solve the linear equations (7); instead, we solve the’equations 

A(u + h) = b + 6b, (8) 

where 

From (7) and (8) it follows that the error 6u in the vector (yb, y;)’ satisfies the ine- 
quality 

IlWc G IIA-‘II, ll~bll,. (10) 
In order to estimate the right side of (lo), we prove the following lemma. 
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LEMMA 1. If 

A= p+A q 
[ 9 I p+iu ’ 

wherep>q>OandA,p>K>-p+q,then 

IIA-’ IL < UP - q + K). 

Proof: We have 

A-‘=((p+4(P+/4-92)P’ 
I 

and thus 

It suffices to consider the case d > ,u > K, and we see that 

Since (p + A)(p + K) - q* > 0 for 12 K > -p + q, the lemma follows immediately 
from the monotonicity of the function of 1 on the right side of (11). 

We now state: 

LEMMA 2. Zf -x2 < K G&(x, y) for x E [0, l] and / Y’~‘(x)I < M on [0, 11, then 
the boundary value problem (1) has a unique solution and the error in the vector 
uT = (yb, y;) satisfies 

lIwo~ M 120(12 + K) ’ 

The proof follows immediately from (2), (9), (10) and Lemma 1. 
We now write 

u + till = (To, 7,)’ 

and let p’(x) denote the polynomial obtained when we replace yb and y; in (3) by y0 
and p,, respectively. Thus F is the polynomial which we actually construct. To 
compare j(x) with y(x) we write 

Y(X) - p’(x) = (Y(X) - P(X)) + (P(X) - F(x)). (13) 

The second term on the right of (13) may be estimated from (3): 

IP(X) - m)l <x(1 -2x* +x3) /l~ullz, 

581/38!2 IO 
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so that for 0 < h < 1 

The first term on the right of (13) is estimated from (4): 

j y(h) - p(h)1 < Mh3/6!. 

Combining (14) and (15), and using (12), we deduce from (13) that 

I Y(h) - dV)l G +&.((l+E) -‘+2q. 

(14) 

(15) 

(16) 

We note that the same inequality holds for / y( 1 - h) - fi( 1 - h)]. 
An alternative to the interpolation process which we have discussed here is given 

by Lanczos [6]; however, Lanczos does not provide an error estimate for his method. 

3. NUMERICAL EXAMPLE 

We will illustrate our method by obtaining a numerical solution of the test problem 

y” = sin y, Y(0) = 0, y(1) = 1. (17) 

First we set up the linear equations (5) and (6) omitting the terms involving yt6), and 
solve to give 

y’(0) 2: 0.854266, y’(1) ‘y 1.288190. 

We choose h = 0.1 and evaluate f(O. 1); that is, using (3) with the above approximate 
values for yb and y;. This yields 

~(0.1) ~0.085570. 

The most obvious discretization of (1) at x = x, is 

Y n+1-2Yn+Yn-,=h2f(Xn,Y,), (18) 

which has a truncation error of 0(/z’). However, with starting values y, = 0, 
y, = 0.085570, we use the O(h4) method 

Y n+l-2Yn+Yn-1=(1/12)h2(f(x,+,, Yn+A+ lOf(x,,Y,)+f(x”-,,Y,-,)). (19) 

Since (19) is implicit, (18) may be used at each stage as a predictor for (19). The 
resulting solution is displayed in the column y, of Table I. This gives y,, = 0.997382, 
which differs by 0.002618 from the given boundary value y( 1) = 1. 

We use Fox’s q-method (see [3]) to compute an improved numerical solution yz, 
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TABLE I 

Numerical Solution of y” = shy, y(O) = 0, y( 1) = 1 

n 4’ n v. v: AX”) YW 

0 0 0 0 0 0 
1 0.085570 0.000262 0.085798 0.085570 0.085797 
2 0.171995 0.000527 0.172453 0.172006 0.172452 
3 0.260132 0.000796 0.260824 0.260189 0.260823 
4 0.350841 0.001073 0.351774 0.35 1006 0.35 1773 
5 0.444987 0.001360 0.446169 0.445347 0.446 169 
6 0.543438 0.001659 0.544880 0.544092 0.544879 
7 0.647058 0.001973 0.648773 0.648 105 0.648773 
8 0.756705 0.002303 0.758707 0.758228 0.758706 
9 0.873214 0.002649 0.8755 17 0.875270 0.8755 16 

10 0.997382 0.003011 1 .oooooo 1 .oooooo 1 .oooooo 

which appears in the fourth column of our table. For completeness, we now describe 
how this correction is performed. Let us denote by z(x) the function which satisfies 
the given differential equation together with boundary conditions z(0) = 0, 
41) = Yl,. Now write y(x) = z(x) + q(x), where y is the exact solution of (17). Thus 

(z + r)” = “ox, z + rl) 

and, on linearizing, we obtain 

II” ‘v v f&, z). (20) 

We assume that (20) holds exactly and seek the solution which satisfies the boundary 
conditions ~(0) = 0, Q$ 1) = 0.002618. We choose ‘lo = 0, q, = 0.000262 (obtained by 
assuming that r is itself linear; this choice of V, is not critical). We again use method 
(19) and the resulting solution for the r, is given in the table. Note that this gives 
vlo = 0.003011 instead of the required value of 0.002618. Due to the linearity of (20) 
we obtain the solution which matches the correct boundary conditions on multiplying 
the q, in the table by (0.002618)/(0.003011). Finally, the solution to (17) is obtained 
by adding the scaled 9, to the y,, to give yz in the fourth column of the table. This 
may be compared with the Hermite interpolating polynomial 3(x) and the exact 
solution y(x), which are given in the last two columns of the table. 

4. CONCLUDING REMARKS 

Our error estimate (12) shows that the error in the approximation to y’(O) depends 
on the size of Y(~)(X). If y@‘(x) is large compared to y’(x), the approximation may be 
poor, despite the helpful large denominator on the right of (12). 
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Nonetheless, our technique seems to be generally worth using, especially as it 
requires very little additional computation. Indeed, if y’@(x) is not large, p’(x) may for 
some purposes serve as an adequate approximation to the solution y on the whole 
interval [0 11. 

Finally, although we have confined the presentation of our technique to the 
equation y” = f(x, y), we may also apply it to the equation y” = f(x, y, y’). In the 
latter case the two equations in y’(0) and y’(1) are nonlinear. 
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